

CENTRAL QUESTION

PERTURBED SUBSET SUM PROBLEM

the following approximation

Red:		Perturbation Scale ε										
Strong LTH	Sparsity s	0	10^{-3}	$5 \cdot 10^{-3}$	10^{-2}	$2 \cdot 10^{-2}$	$3 \cdot 10^{-2}$	$4 \cdot 10^{-2}$	$5 \cdot 10^{-2}$	10^{-1}	$2 \cdot 10^{-1}$	$3 \cdot 10^{-1}$
	0	0.12	0.14	0.25	0.42	0.68	0.84	0.90	0.93	0.96	0.97	0.98
Blue: Standard Training with SGD	0.1	0.49	0.48	0.65	0.70	0.78	0.82	0.87	0.87	0.94	0.97	0.98
	0.2	0.75	0.76	0.77	0.79	0.84	0.86	0.88	0.87	0.93	0.96	0.97
	0.3	0.83	0.82	0.82	0.82	0.88	0.88	0.86	0.90	0.92	0.94	0.93
	0.4	0.82	0.86	0.88	0.89	0.90	0.89	0.90	0.90	0.88	0.91	0.86
	0.5	0.85	0.88	0.86	0.89	0.87	0.88	0.89	0.89	0.90	0.89	0.76
Orange:	0.6	0.83	0.87	0.87	0.83	0.86	0.88	0.87	0.88	0.87	0.85	0.54
Orange.	0.7	0.81	0.85	0.84	0.83	0.86	0.82	0.81	0.81	0.79	0.74	0.29
Pruning Dominated by SGD	0.8	0.73	0.71	0.71	0.75	0.77	0.75	0.73	0.68	0.77	0.55	0.17

Strong Lottery Ticket Hypothesis with ε **-Perturbation**

Zheyang Xiong^{*}, Fangshuo Liao^{*}, Anastasios Kyrillidis

Department of Computer Science, Rice University

{zx21, Fangshuo.Liao, anastasios}@rice.edu *Equal Contribution

E-PERTURBED STRONG LTH

Let \mathcal{F} be a target neural network with depth L, and the width of the ℓ th layer is d_{ℓ} , and let \mathcal{G}_{W} be the candidate neural network with depth 2L. We approximate f using $\mathcal{G}_{\mathbf{W}}$ by allowing pruning and perturbation on the

$$\eta = \min_{\Delta \boldsymbol{W}, \mathcal{M}} \sup_{\mathbf{x}} \| \mathcal{F}(\mathbf{x}) - (\mathcal{M} \circ \mathcal{G}_{\boldsymbol{W} + \Delta \boldsymbol{W}})(\mathbf{x}) \|.$$

Theorem 2. For \mathcal{G} , if the width of the $(2\ell - 1)$ th layer is d'_{ℓ} , the width of the 2ℓ th layer is d_{ℓ} . As long as

$$d'_{\ell} = O\left(d_{\ell-1} \frac{\log\left(\hat{\eta}^{-1} d_{\ell} d_{\ell}\right)}{1+\varepsilon}\right)$$

then with high probability η defined in Equation (2) has $\eta \leq \hat{\eta}$

Remark: The original SLTH requires $d'_{\ell} = O(d_{\ell-1}\log(\hat{\eta}^{-1}d_{\ell}d_{\ell-1}L))$. Compared with the original SLTH, our result is smaller by a factor of $\frac{1}{1+\varepsilon}$. As $\varepsilon \to \infty$, the required width of the candidate network goes to d_{ℓ} .

Ide bo Ho	ea: [und: ow d
	Algo Inpr weig
	1: 2: 3:
	4. 5: 6: 7:
	8: 9: 10: 11:
	11: 12: 13: 14:
RE	FERE
[1]	Ank wak Ticke Suffi
[2]	Geo: pect <i>Rand</i>
[3]	Jona poth terna
[4]	Arth Hicl

PGD+EDGE-POPUP

Training the neural network using SGD while ling the max-norm of the weight change to ε . loes the pruned accuracy vary as we vary ε

orithm 1 PGD+StrongLTH **ut:** Perturbation scale ε , neural network loss \mathcal{L} , initial ght \mathbf{W}_0 , learning rate $\{\alpha_t\}_{t=0}^{T-1}$ $\Delta \mathbf{W} \leftarrow 0$ for $t \in \{0, ..., T-1\}$ do $\hat{\mathbf{W}} \leftarrow \Delta \mathbf{W} - \alpha_t \nabla \mathcal{L}(\mathbf{W}_t)$ $\Delta \mathbf{W} \leftarrow \operatorname{sign}(\hat{\mathbf{W}}) \cdot \min\{\operatorname{abs}(\hat{\mathbf{W}}), \varepsilon\}$ $\mathbf{W}_{t+1} \leftarrow \mathbf{W}_0 + \Delta \mathbf{W}$ end for $\ell^* \leftarrow \infty, \mathcal{M}^* \leftarrow \text{None}$ for pruning level $s \in \{0.1, 0.2, \dots, 0.9\}$ do $\ell, \mathcal{M} \leftarrow \text{Edge-Popup}(\mathcal{L}, \mathbf{W}_T, s)$ if $\ell \leq \ell^*$ then $\ell^* \leftarrow \ell \;, \mathcal{M}^* \leftarrow \mathcal{M}$ end if end for **return** Optimal loss ℓ^* , mask \mathbf{M}^* and sparsity level s

NCE

kit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishkarma, and Dimitris Papailiopoulos. Optimal Lottery ets via SUBSETSUM: Logarithmic over-Parameterization is *icient*. Curran Associates Inc., Red Hook, NY, USA, 2020.

orge S. Lueker. Exponentially small bounds on the exted optimum of the partition and subset sum problems. *dom Structures & Algorithms*, 12(1):51–62, 1998.

athan Frankle and Michael Carbin. The lottery ticket hyhesis: Finding sparse, trainable neural networks. In *In*ational Conference on Learning Representations, 2019.

hur da Cunha, Francesco d'Amore, Frédéric Giroire, ham Lesfari, Emanuele Natale, and Laurent Viennot. Revisiting the random subset sum problem, 2022.