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Background & Motivation

Principal Component Analysis.

yi ∼ D(Σ⋆)Cov. Mat Σ⋆

Σ = Avg(yiy
⊤
i )vk = Topk(Σ)

Computing Top-1 Eigenvector.

u⋆
1 = arg max

u:∥u∥2=1
u⊤Σu

This can be solved with linear convergence us-
ing e.g. power iteration, starting at initialized
vector v:

x0 = v; x̂t+1 = Σxt; xt+1 =
x̂t+1

∥x̂t+1∥2
.

Deflation Method. Gradually remove the
solved eigenvector from the matrix.

Σ1 = Σ; vk = Top1 (Σk, v̂k,init, T ) ;

Σk+1 = Σk − vkv
⊤
k Σkvkv

⊤
k ,

Central Question

Can we design model-parallel distributed PCA
methods based on deflation?

Model-parallel: different workers are responsi-
ble for solving different eigenvectors.

Why model-parallel? Possibility of exploiting
another level of parallelism that is independent
of data-parallel computing [1, 2].

Why deflation? Solving vk only needs the
knowledge of Σk.

Game-Theoretical Perspective

As in the EigenGame[1] paper, we also study
our algorithm under game-theoretic setting by
viewing the solver of each eigenvector as a
player. In parallel deflation, the kth solver max-
imizes the utility given by

Vk

(
v | {vk′}k−1

k′=1

)
= v⊤Σv−

k−1∑
k′=1

v⊤
k′Σvk′ ·

(
v⊤
k′v

)2
(1)Let u⋆

k be the kth eigenvector of Σ.

Theorem 1. Assume that the covariance matrix Σ
has positive and strictly decreasing eigenvalues λ⋆

1 >
· · · > λ⋆

K > 0. Then, {u⋆
k}Kk=1 is the unique strict

Nash Equilibrium defined by the utilities in (1) up to
sign perturbation, i.e., replacing u⋆

k with −u⋆
k.

Under the condition thatvk′ = u⋆
k′ , Vk above is

equivalent to the utility of EigenGame.
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Our Algorithm: Parallel Deflation

Breaking Sequential Dependency. Sequential dependency is important in previous algorithm be-
cause solving vk need vk−1 to be completely solved. Our method provides a rough estimation of vk−1

to the solver of vk, and continuously provide improved versions of vk−1 later.
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Convergence Analysis

Assumption 1. [3] We assume that there exists a real value F
(
Σ̂
)
∈ (0, 1) that depends on Σ̂ such that for

any x0 ∈ Rd, Top1(·) satisfies ∥Top1(Σ̂,x0)− u⋆∥2 ≤ F(Σ̂)∥x0 − u⋆∥2.

Theorem 2. Assume that Assumption 1 holds, and let Fk = maxℓ≥k F
(
Σ̂k,ℓ

)
. Let {mk}Kk=0 be defined

recursively by mk = max
{
Fk,

1
k
+ k−1

k
mk−1

}
and m0 = F1. Let {sk}nk=1 be defined as s1 = 1 and for all

k ∈ [K − 1] and k′ ∈ [k]:

sk+1 ≥ sk +O

(
max

{(
log 1

mk

)−1 (
1 + log

kλ⋆
k

λ⋆
k+1−λ⋆

k+2

)
, kmk+1

1−mk

})
. (2)

Then, we have that the following holds for all k ∈ [K]

∥vk,ℓ − u⋆
k∥2 ≤ O

(
(ℓ− sk)m

ℓ−sk
k

)
; ∀ℓ ≥ sk − 1. (3)

Interpretation of the theorem.
• (3) shows convergence of the kth eigenvector with rate mk ∈ (0, 1), starting at round sk.
• (2) characterize the gap between the two consecutive convergence starting point, sk and sk+1.

Experimental Result
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Comparison of the convergence behavior of parallel deflation, EigenGame-α, and EigenGame-µ (left). in deterministic
setting on synthetic dataset with power-law decaying eigenvalues, (middle)in stochastic setting on synthetic dataset

with power-law decaying eigenvalues, and (right). in stochastic setting on MNIST dataset.
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Mathematical Description. In the ℓ-th com-
munication round, Worker k executes:

• Updating deflated matrix

λk′,ℓ = v⊤
k′,ℓ−1Σvk′,ℓ−1; ∀k′ ≤ k

Σk,ℓ = Σ−
k−1∑
k′=1

λk′,ℓvk′,ℓ−1v
⊤
k′,ℓ−1

• Updating eigenvector estimate

vk,ℓ = Top1 (Σk,ℓ,vk,ℓ−1) ; ∀ℓ ≥ k.

Extension to Stochastic Setting. Let Ŷ ∈
Rn×d be a mini-batch of (properly scaled) data.
Then Σ ≈ Ŷ⊤Ŷ. The algorithm can be re-
written as

• Compute eigenvalue estimations

λ̂k′,ℓ = ∥Ŷvk′,ℓ−1∥22; ∀k′ ∈ [k − 1]

• Computation of matrix-vector prod-
uct

Σk,ℓx = Ŷ⊤Ŷxt

−
k−1∑
k′=1

λ̂k′
(
v⊤
k′,ℓ−1xt

)
· vk′,ℓ−1.

• Apply the matrix-vector product com-
putations to the Top1 algorithm to ob-
tain vk,ℓ.


