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Background & Motivation Our Algorithm: Parallel Deflation

Principal Component Analysis. Breaking Sequential Dependency. Sequential dependency is important in previous algorithm be-
- ~ - ~ cause solving v, need v_; to be completely solved. Our method provides a rough estimation of vj;_,
to the solver of v, and continuously provide improved versions of v;_; later.
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solved eigenvector from the matrix. k JL g @’ ‘ gh o @’ ‘ Il g @J e Computation of matrix-vector prod-
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Can we design model-parallel distributed PCA k J = \ J = \ J = + Apply the matrix-vector product com-
methods based on deflation? ~  ~~ ~ =~ ~~  ~~ . .
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ain vy, y.

Model-parallel: different workers are responsi-
ble for solving ditferent eigenvectors.

Convergence Analysis

Why model-parallel? Possibility of exploiting
another level of parallelism that is independent
of data-parallel computing [1, 2].

Assumption 1. [3] We assume that there exists a real value F (fl) c (0,1) that depends on X such that for
e RY Top1 () satisfies || Top1 (X, xg) — u*|ls < F(2)||xe — u*|lo.
Why deflation? Solving v, only needs the | [“™™ op1(-) satisfies || Top1 (S, x0) — u*[|> < F()|xo — u?

knowledge of . Theorem 2. Assume that Assumption 1 holds, and let Fj, = maxy>y F (f]kg) Let {my};_, be defined

recursively by my, = max { Fy, + + “Lmy_1} and mo = Fy. Let {s;}}_, be defined as s; = 1 and for all
ke |K—1and k' € |k]:

Game-Theoretical Perspective

As in the EigenGame|[1l] paper, we also study ( 1 \ )
: . : 1 kAL km+1
our algorithm under game-theoretic setting by Sk+1 = Sk + O (max< (log m_k) (1 + log +——= ) ) T—my >> ' (2)
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viewing the solver of each eigenvector as a ,
player. In parallel deflation, the kth solver max- Then, we have that the following holds for all k € K|

imizes the utility given by Vi —utl, <O ((g — Sp) mi‘sk) > s — 1. (3)

Rl Interpretation of the theorem.
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k K k=1 kYRR * (3) shows convergence of the kth eigenvector with rate m; € (0, 1), starting at round sy.
k=1

Let u; be the kth eigenvector of 3. * (2) characterize the gap between the two consecutive convergence starting point, s, and sy ;.

Theorem 1. Assume that the covariance matrix 3 | WHIISilNEIBCEEL
has positive and strictly decreasing eigenvalues \} >

> N > 0. Then, {ut}:'_, is the unique strict 1;}

Nash Equilibrium defined by the utilities in (1) up to 1.0

sign perturbation, i.e., replacing u; with —u;. 508
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Under the condition thatvy = uj,, Vi above is 0.4
equivalent to the utility of EigenGame. 0.2
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