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CENTRAL QUESTION

Does Nesterov’s momentum provably converge
faster for training neural networks?

Our focus: minw f̂ (w) where f̂ can be non-convex
and non-smooth with Nesterov’s momentum:

wk+1 = w̄k − ηf̂ (w̄k)

w̄k+1 = wk+1 + β (wk+1 −wk)
(1)

PARAMETER PARTITION

Definition 1. A function f : Rd1 × Rd2 → R is called a
partitioned equivalence of f̂ : Rd → R, if i) d1 + d2 = d,
and ii) there exists a permutation function π : Rd → Rd

over the parameters of f̂ , such that f̂(w) = f(x,u) if and
only if π(w) = (x,u). We say (x,u) is a partition of w.

w︷ ︸︸ ︷
︸ ︷︷ ︸

x

︸ ︷︷ ︸
u

Intuition: Partition the parameters into two sets,
with one set having nice properties like strong con-
vexity and smoothness and the other satisfying min-
imum assumption.

min
w∈Rd

f̂ (w) ≡ min
x∈Rd1 ,u∈Rd2

f (x,u)

Nesterov’s Momentum on f (x,u)

(xk+1,uk+1) = (yk,vk)− η∇f(yk,vk)

(yk+1,vk+1) = (xk+1,uk+1)

+ β ((xk+1,uk+1)− (xk,uk))

(2)

We assume that f = g ◦ h with h : Rd1 × Rd2 → Rd̂

(model) and g : Rd̂ → R (L2-smooth loss).

ASSUMPTIONS ON u

Assumption 1. h satisfies G1-Lipschitzness with respect
to the second part of its parameters:

∥h(x,u)− h(x,v)∥2 ≤ G1 ∥u− v∥2 ,
∀x ∈ B(1)

Rx
; u,v ∈ B(2)

Ru
.

Assumption 2. The gradient of f with respect to x,
namely ∇1f(x,u), satisfies G2-Lipschitzness with respect
to u:

∥∇1f(x,u)−∇1f(x,v)∥2 ≤ G2 ∥u− v∥2 ,
∀x ∈ B(1)

Rx
; u,v ∈ B(2)

Ru
.

PARTIAL STRONG CONVEXITY AND SMOOTHNESS

Assumption 3. f is µ-strongly convex with µ > 0 with respect to the first part of its parameters:

f(y,u) ≥ f(x,u) + ⟨∇1f(x,u),y − x⟩+ µ

2
∥y − x∥22 , ∀x,y ∈ Rd1 ; u ∈ B(2)

Ru
.

Assumption 4. f is L1-smooth with respect to the first part of its parameters:

f(y,u) ≤ f(x,u) + ⟨∇1f(x,u),y − x⟩+ L1

2
∥y − x∥22 , ∀x,y ∈ Rd1 ; u ∈ B(2)

Ru
.

Assumption 5. Minimum values of f restricted to the optimization over x equal the global minimum value:

min
x∈Rd1

f(x,u) = f ⋆ := min
x∈Rd1 ,u∈Rd2

f(x,u); ∀u ∈ B(2)
Ru

.

HOW STRONG IS ASSUMPTION 1-5?

Theorem 1. Let f̃ be µ̃-strongly convex and L̃-smooth. Then f̃ satisfies Assumptions 1-5 with:

Rx = Ru = ∞; µ = µ̃; L1 = L2 = L̃; G1 = G2 = 0.

Also, suppose that Assumption 3, 5 hold. Then, for all x ∈ Rd and u ∈ B(2)
Ru

, we have ∥∇f(x,u)∥22 ≥ 2µ (f(x,u)− f ⋆).

ACCELERATED CONVERGENCE UNDER GENERAL ASSUMPTIONS

Theorem 2 (Gradient Descent). Suppose that Assumptions 1-5 hold with G4
1 ≤ O

(
µ2

L2
2

)
and

Rx ≥ Ω
(
ηκ

√
L1 (f(x0,u0)− f ⋆)

1
2

)
; Ru ≥ Ω

(
ηκG1

√
L2 (f(x0,u0)− f ⋆)

1
2

)
.

Then there exists constant c > 0 such that gradient descent with η = c
L1

converges according to:

f(xk,uk)− f ⋆ ≤
(
1− c

4κ

)k

(f(x0,u0)− f ⋆) .

Theorem 3 (Nesterov’s Momentum). Let Assumptions 1-5 hold. Consider Nesterov’s momentum given by (2) with
initialization {x0,u0} = {y0,v0}. There exists absolute constants c, C1, C2 > 0, such that, if µ, L1, L2, G1, G2 and
Rx, Ru satisfy:

G4
1 ≤ O

(
µ7/2

L
3/2
1 L3

2

)
; G2

1G
2
2 ≤ O

(
µ9/2

L
3
2
1 L2

2

)
Rx ≥ Ω

(
L

1/4
1 L

1/2
2

µ3/4
(f(x0,u0)− f ⋆)

1/2

)
; Ru ≥ Ω

(
G1L

3/4
1 L2

µ7/4
(f(x0,u0)− f ⋆)

1/2

)
,

(3)

and, if we choose η = c/L1, β = (4
√
κ−

√
c)/(4√κ+ 7

√
c), then xk,yk ∈ B(1)

Rx
and uk,vk ∈ B(2)

Ru
for all k ∈ N, and Nesterov’s

momentum converges according to:

f(xk,uk)− f ⋆ ≤ 2

(
1− c

4
√
κ

)k

(f(x0,u0)− f ⋆). (4)

IDEA OF PROOF

The core of our proof is to show that ϕk defined below satisfies ϕk ≤
(
1− c

4
√
κ

)k

ϕ0:

ϕk = f(xk,uk)− f ⋆ +Q1

∥∥zk − x⋆
k−1

∥∥2

2
+

η

8
∥∇1f(yk−1,vk−1)∥22

Difficulty 1: The global minimizer of f (x,u) may not be unique. We define a global minimizer x⋆ (u) for
each u and we can show that ∥x⋆ (u1)− x⋆ (u2)∥2 ≤ G2

µ
∥u1 − u2∥2.

Difficulty 2: It is not straightforward to control ∇2f (yk,vk). We first show that ∥∇2f (yk,vk)∥22 ≤
G2

1L2

µ
∥∇2f (yk,vk)∥22 and bound ∥∇2f (yk,vk)∥22 using a combination of ∥xk+1 − xk∥22 and ∥xk − xk−1∥22.

NEURAL NETWORKS SATISFY PARTIAL STRONG CONVEXITY

Λ-layer ReLU neural network with layer widths
{dℓ}Λℓ=0 and activation σ(A)ij = max{0, aij}. Let the
weight matrix in the ℓ-th layer be Wℓ. Then, the out-
put of each layer is given by:

Fℓ (θ) =


X, if ℓ = 0;

σ (Fℓ−1 (θ)Wℓ) , if ℓ ∈ [Λ− 1];

FΛ−1 (θ)WΛ, if ℓ = Λ.

(5)

We consider the training of FΛ (θ) over the MSE loss
with data (X,Y), as in L(θ) = 1

2
∥FΛ (θ)− Y ∥2F .

Theorem 4. If the width of the network satisfies:

dℓ = Θ(m) ∀ℓ ∈ [Λ− 2]; dΛ−1 = Ω
(
n4.5max

{
n, d2

})
,

for some m ≥ max{d0, dΛ}, and we initialize the weights
according to:

[Wℓ(0)]ij ∼ N
(
0, d−1

ℓ−1

)
, ∀ℓ ∈ [Λ− 1];

[WΛ(0)]ij ∼ N
(
0, d

− 3
2

Λ−1

)
.

Then, with a high probability, there exists a partition
(x,u) of the neural network parameters θ such that, defin-
ing f = g ◦ h with h (x,u) = FΛ (θ) and g(s) =
1
2
∥s−Y∥2F , we have that f satisfies Assumption 1-5 with

µ, L1, L2, G1, G2, Rx and Ru obeying the condition in (3).

EXPERIMENTS ON ADDITIVE MODELS

Let f = g ◦ h with g(s) = 1
2
∥s− y∥22 and h (x,u) =

A1x+ σ (A2u) with σ being a B-Lipschitz function.

f (x,u) =
1

2
∥A1x+ σ (A2u)− y∥22

We can show that f satisfies Assumptions with small
enough G1, G2 and large enough Rx, Ru as long as
σmax (A) is small and σmin (A1) is large.
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