Provable Accelerated Convergence of Nesterov's Momentum
for Deep ReLU Neural Networks

CENTRAL QUESTION

Does Nesterov’s momentum provably converge
faster for training neural networks?

Our focus: miny, f (W) where f can be non-convex
and non-smooth with Nesterov’'s momentum:

Wit1 = Wi — 77f (W)

Wil = Wig1 + 8 (Wip1 — Wy)

(1)

PARAMETER PARTITION

Definition 1. A function f : R® x R% — R is called a
partitioned equivalence of f : R* — R, if i) dy + doy = d,
and i1) there exists a permutation function © : R* — R

over the parameters of f, such that f(w) = f(x,u) if and
only if m(w) = (x,u). We say (x,u) is a partition of w.
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Intuition: Partition the parameters into two sets,
with one set having nice properties like strong con-
vexity and smoothness and the other satistying min-
Imum assumption.

min
x€ER ueR2

f(x,u)

in f(w)=
min f (w)

Nesterov’'s Momentum on f (x, u)

(Xk—l—h uk—l—l) — (Yka Vk) _ va(YIm Vk)
(Y1, Vir1) = (Xp41, Wpet1)
-+ 6 ((Xk—l—h uk—l—l) — (Xka uk))

(2)

We assume that f = g o h with i : R®" x R® — R4
(model) and ¢ : R — R (Ly-smooth loss).

ASSUMPTIONS ON u

Assumption 1. h satisfies G1-Lipschitzness with respect
to the second part of its parameters:

Hh(X7 11) o h(X7 V)HQ < Gl Hu o VH27
Vx € Bg}z; u,v € Bg&.

Assumption 2. The gradient of f with respect to X,
namely V1 f (x, ), satisfies Go-Lipschitzness with respect
to u:

Hvlf(xa 11) o vlf(Xa V)HQ < G2 Hu o VHQ)
Vx € B(l}z; u,v e B(Qz.
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PARTIAL STRONG CONVEXITY AND SMOOTHNESS

[
[y.u) > flxu) +(Vif(xu)y —x) + D lly —x[,,  ¥xy € R";
Assumption 4. f is L,-smooth with respect to the first part of its parameters:

fly,u) < f(x,u) + (Vif(x,u),y — %)

f(x,u); VYu € Bgﬁ.

min

min f(x,u) = f :=
XERdl,uERdQ

xcR%1

HOW STRONG IS ASSUMPTION 1-5?

Assumption 3. f is u-strongly convex with p > 0 with respect to the first part of its parameters:

u € B(Qz.

vx,y € RY: ue BY.

Assumption 5. Minimum values of f restricted to the optimization over x equal the global minimum value:

Theorem 1. Let f be ji-strongly convex and L-smooth. Then f satisfies Assumptions 1-5 with:

RX:RUZOO,/L:/], LlZLQZE, G1:G2:O

Also, suppose that Assumption 3, 5 hold. Then, for all x € R and u € B(Qz, we have ||V f(x,0)||5 > 2u (f(x, 1) — f*).

ACCELERATED CONVERGENCE UNDER GENERAL ASSUMPTIONS

Theorem 2 (Gradient Descent). Suppose that Assumptions 1-5 hold with G} < O (g—z)

R = Q (n/Li (f(x0,00) = £)% )i Ru = Q (9nGiy/La (f(x0,m0) = £)%)

Then there exists constant ¢ > 0 such that gradient descent with n = - converges according to:

Fosmd) — < (1= ) (0o, m0) = 1),

Theorem 3 (Nesterov’'s Momentum). Let Assumptions 1-5 hold. Consider Nesterov’s momentum given by (2) with
initialization {xq,up} = {¥yo,Vvo}. There exists absolute constants c¢,Cy,Cy > 0, such that, if u, L1, Ly, G1, Gy and

Ry, Ry satisfy:
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1/4 ,1/2 /s ) i/‘l 5
R, >0 (Llugif (f(x0,10) — f*) /> . Ry, >0 (G fﬂ/f (f(x0,u9) —

momentum converges according to:

f(Xk»uk)—f*§2<1— >k(f(Xoauo)—f*)-

IDEA OF PROOF

k
The core of our proof is to show that ¢, defined below satisfies ¢, < (1 . \‘;E) bo:

(3)

f*)1/2> |

and, if we choose n = ¢/L., f = K=V [(ayi +70), then X, yi € ng and uy, vy € ng for all k € N, and Nesterov’s

(4)

* « 12, 7
b = f(Xp,up) — f*+ Q1 ||ze — X5 ||, + 3 Vi f(Yi1, Vi1

Difficulty 1: The global minimizer of f (x,u) may not be unique. We define a global minimizer x* (u) for

each u and we can show that ||x* (u;) — x* (uz)|[, < % |a; — us|,.

Difficulty 2: It is not straightforward to control V,f (yx, vi).
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We first show that ||Vaof (v, Vi)l <
IVaof (v, vi) |5 and bound ||V f (v, vi)||; using a combination of ||x;.; — x;||; and

x5 — Xp1]5e

NEURAL NETWORKS SATISFY PARTIAL STRONG CONVEXITY

A-layer ReLU neural network with layer widths
{d,}2_, and activation o(A);; = max{0,a,;;}. Let the
weight matrix in the /-th layer be W,. Then, the out-
put of each layer is given by:

X,
o) (Fg_l (6) Wg) ]
Fa_1(0) Wy,

if ¢ = 0;
if { € [A —1];
if ¢ = A.

F,(0) = (5)

We consider the training of F (8) over the MSE loss
with data (X,Y),asin £(8) = 1 ||FA (8) — Y||..

2
Theorem 4. If the width of the network satisfies:
de =0 (m) V0 € [A—2]; dy—y = Q2 (n*° max {n,d*}),

for some m > max{dy, d}, and we initialize the weights
according to:

(W(0)],, ~ N (0,d,_ vl e [A—1];
Wa(0)], ~ N (0,d3%).

Then, with a high probability, there exists a partition
(x, 1) of the neural network parameters 0 such that, defin-
mg f = goh with h(x,u) = F,(0) and g(s) =
2ls — Y ||%., we have that f satisfies Assumption 1-5 with
w, L, Lo, G1, Go, Ry and R, obeying the condition in (3).

EXPERIMENTS ON ADDITIVE MODELS

Let f = goh with g(s) = £ |s — y|5 and h (x,u) =

A1x 4 0 (Aou) with o being a B-Lipschitz function.

1
f(x0) = = | A+ 0 (Asu) — v

We can show that f satisties Assumptions with small
enough G, G9 and large enough Ry, R, as long as
Omax (A) is small and oy, (A1) is large.
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