

Fangshuo Liao[†], Junhyung Lyle Kim[†], Cruz Barnum^{*}, Anastasios Kyrillidis[†] †Rice University Computer Science Department, {Fangshuo.Liao,jlylekim,anastasios}@rice.edu *UIÚC Computer Science Department, cruzjb2@illinois.edu

BACKGROUND: PCA AND DEFLATION METHOD

Our focus: Real symmetric matrix $\Sigma \in \mathbb{R}^{d \times d}$ with eigenvalues and eigenvectors $\{\lambda_i^*, \mathbf{u}_i^*\}_{i=1}^d$, satisfying $1 = \lambda_1^* > \lambda_2^* > \dots > \lambda_d^* > 0.$

Target: Find the top-K eigenvectors of Σ . When K=1, one can solve the following problem using e.g. power iteration.

$$\mathbf{u}^* = \underset{\mathbf{v} \in \mathbb{R}^d, \|\mathbf{v}\|_2 = 1}{\operatorname{arg\,min}} \mathbf{v}^{\top} \mathbf{\Sigma} \mathbf{v}$$

When K > 1, the problem can be generalized to

$$\mathbf{U}^* = \underset{\mathbf{V} \in \{\mathbf{Q}_{:,:K}: \mathbf{Q} \in SO(d)\}}{\arg \max} \langle \mathbf{\Sigma} \mathbf{V}, \mathbf{V} \rangle, \qquad (1)$$

A popular method to solve (1) is the deflation method

$$\Sigma_1 = \Sigma; \quad \mathbf{v}_k = PCA(\Sigma_k, t);$$

$$\Sigma_{k+1} = \Sigma_k - \mathbf{v}_k \mathbf{v}_k^{\mathsf{T}} \Sigma_k \mathbf{v}_k \mathbf{v}_k^{\mathsf{T}},$$
(2)

Here $PCA(\cdot)$ denotes a sub-routine that solves for the top eigenvector of a matrix (e.g. power iteration) and t is the number of iterations of the sub-routine.

Ideal Scenario: Let u_k be normalized top eigenvector of Σ_k such that $\mathbf{u}_k^{\top}\mathbf{u}_k^*=1$. When $\mathbf{v}_k=\mathbf{u}_k$ for all $k = 1, \dots, K$, we can further guarantee that $\mathbf{u}_k = \mathbf{u}_k^*$.

ISSUE WITH INEXACT DEFLATION

Issue: PCA (·) is usually inexact: $\delta_k := \mathbf{v}_k - \mathbf{u}_k \neq 0$.

Error Propagation: Let $\Sigma_k^* = \sum_{k'=k+1} \lambda_k'^* \mathbf{u}_{k'}^* \mathbf{u}_{k'}^{*\top}$:

$$\mathbf{v}_k
eq \mathbf{u}_k \Rightarrow \mathbf{v}_k
eq \mathbf{u}_k^* \Rightarrow \mathbf{\Sigma}_{k+1}
eq \mathbf{\Sigma}_{k+1}^* \Rightarrow \mathbf{u}_{k+1}
eq \mathbf{u}_{k+1}^*$$

Influence on downstream task: $\|\boldsymbol{\delta}_k\|_2$ is larger when t is smaller (less computation).

Spectral Clustering on MNIST dataset

Central Question:

How can we characterize the accumulation and propagation of the errors from inexactly solving each top eigenvector in $PCA(\cdot)$?

SUB-ROUTINE AGNOSTIC ERROR PROPAGATION

In this section, we assume that the sub-routines PCA (\cdot) only gives us the magnitude of the error $\|\boldsymbol{\delta}_{k}\|_{2}$'s.

Theorem 1. Consider the scenario of looking for the top-K eigenvectors of $\Sigma \in \mathbb{R}^{d \times d}$. Let $\mathcal{T}_j = \lambda_j^* - \lambda_{j+1}^*$, for $j \in [d-1]$, and $\mathcal{T}_d = \lambda_d^*$. Also, let $\mathcal{T}_{K,\min} = \min_{k \in [K]} \mathcal{T}_k^*$. If $\forall k \in [K-1]$ it holds:

$$\|\boldsymbol{\delta}_{k}\|_{2} \leq \frac{\mathcal{T}_{K,\min}}{20K} \prod_{j=k+1}^{K-1} \left(3 + \frac{2\lambda_{j}^{*}}{\mathcal{T}_{j}}\right)^{-1} \Rightarrow ; \|\boldsymbol{\Sigma}_{k} - \boldsymbol{\Sigma}_{k}^{*}\|_{F} \leq O\left(\mathcal{T}_{k}\right)$$
 (3)

then the output of the deflation method in (2) satisfies for all $k \in [K]$:

$$\|\mathbf{v}_{k} - \mathbf{u}_{k}^{*}\|_{2} \leq \|\mathbf{u}_{k} - \mathbf{u}_{k}^{*}\|_{2} + \|\boldsymbol{\delta}_{k}\|_{2} \leq 5 \sum_{k'=1}^{k} \frac{\lambda_{k'}^{*}}{\lambda_{k}^{*}} \|\boldsymbol{\delta}_{k'}\|_{2} \prod_{j=k'+1}^{k} \left(3 + \frac{2\lambda_{j}^{*}}{\mathcal{T}_{j}}\right).$$
(4)

Example: Consider Σ with $\lambda_i^* = \frac{1}{i}$, and $\|\boldsymbol{\delta}_k\|_2 \leq c \cdot \alpha^t$ for some $\alpha \in (0,1)$. Then

$$t \ge \Omega \left(\log \frac{1}{\epsilon} + K \log K \right) \Rightarrow \|\mathbf{v}_k - \mathbf{u}_k^*\|_2 \le \epsilon; \ \forall k \in [K]$$

Issue: To guarantee an ϵ -small error, t grows faster with K as λ_i 's decrease faster (smaller eigengaps).

^aThis theorem holds under a more relaxed assumption. The choice of $\|\boldsymbol{\delta}_k\|_2$ here is made just to make the result more interpretable.

ERROR PROPAGATION WHEN USING POWER ITERATION

In this section, we assume that the sub-routine PCA (\cdot) is the power iteration.

Power Iteration: Given a symmetric matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$ with rank r and an initialization vector $\mathbf{x}_0 \in \mathbb{R}^d$, then power iteration executes:

 $\hat{\mathbf{x}}_{t+1} = \mathbf{M}\mathbf{x}_t; \quad \mathbf{x}_{t+1} = \frac{\mathbf{x}_{t+1}}{\|\hat{\mathbf{x}}_{t+1}\|_2}.$

Why is this helpful? Previous theorem only utilize the magnitude of δ_k 's, while power iteration also tells us the directional information of δ_k 's.

Theorem 2. Consider the problem of looking for the top-K eigenvectors of $\Sigma \in \mathbb{R}^{d \times d}$. Let $\mathcal{T}_i = \lambda_i^* - \lambda_{i+1}^*$ for $i \in [d-1]$ and $\mathcal{T}_d = \lambda_d^*$, and let $\mathcal{T}_{k,\min} = \min_{i \in [k]} \mathcal{T}_i$. Assume that there exists a constant $c_0 \in (0, \infty)$ such that the initialized vector $|\mathbf{x}_{0,k}|$ in the k-th power iteration procedure satisfies $|\mathbf{x}_{0,k}^{\top}\mathbf{u}_k| > c_0^{-1}$ for all $k \in [K]$. A Let $\mathcal{G} = \max_{k \in [K]} \left(1 + \frac{c_0 \lambda_k^* \lambda_{k+1}^*}{\lambda_k^* - \lambda_{k+1}^*}\right)$. If we use t steps of power iteration to solve for the top eigenvectors such that:

$$t \ge \begin{cases} \Omega\left(\frac{K - k + \log K / \tau_{K, \min} + \log \mathcal{G}}{\log(7\lambda_k^* + \lambda_{k+1}^*) - \log(7\lambda_{k+1}^* + \lambda_k^*)}\right), & \forall k \le K \\ \Omega\left(\frac{1}{\log \lambda_k^* - \log \lambda_{k+1}^*}\right), & \forall k \le d \end{cases}$$

$$(6)$$

Then we can guarantee that for all $k \in [K]$

$$\|\mathbf{v}_{k} - \mathbf{u}_{k}^{*}\|_{2} \leq 3 \sum_{k'=1}^{k} 8^{k-k'} \frac{\lambda_{k'}^{*}}{\lambda_{k}^{*}} \left(5 \|\boldsymbol{\delta}_{k'}\|_{2} + \frac{7c_{0}}{\mathcal{T}_{k'}} \left(\frac{\lambda_{k'+1}^{*}}{\lambda_{k'}^{*}} \right)^{t} \right).$$
 (7)

Example: Consider Σ with $\lambda_i^* = \frac{1}{i}$. Then $\mathcal{G} = O(1)$, and

$$t \ge \Omega \left(\log \frac{1}{\epsilon} + K \right) \implies \|\mathbf{v}_k - \mathbf{u}_k^*\|_2 \le \epsilon; \ \forall k \in [K]$$

^aThis is a standard assumption to guarantee the convergence of the power iteration, as in Golub and Van Loan [1996]

REFERENCE

Gene H. Golub and Charles F. Van Loan. *Matrix Computations*. The Johns Hopkins University Press, third edition, 1996.

IDEA OF PROOF

Lemma 1 (Davis-Kahan $\sin \Theta$ Theorem). Let $\mathbf{M}^* \in$ $\mathbb{R}^{d imes d}$ and let $\mathbf{M}=\mathbf{M}^*+\mathbf{H}$. Let \mathbf{a}_1^* and \mathbf{a}_1 be the top eigenvectors of \mathbf{M}^* and \mathbf{M} , respectively. Then we have:

$$\sin \angle \left\{ \mathbf{a}_{1}^{*}, \mathbf{a}_{1} \right\} \leq \frac{\left\| \mathbf{H} \right\|_{2}}{\min_{j \neq k} \left| \sigma_{k}^{*} - \sigma_{j} \right|}.$$

Based on Lemma 1, we show that

$$ullet \|\mathbf{u}_k - \mathbf{u}_k^*\|_2 \leq rac{2}{\mathcal{T}_k} \|\mathbf{\Sigma}_k - \mathbf{\Sigma}_k^*\|_{H^2}$$

$$\|\mathbf{u}_{k} - \mathbf{u}_{k}^{*}\|_{2} \leq \frac{2}{\mathcal{T}_{k}} \|\mathbf{\Sigma}_{k} - \mathbf{\Sigma}_{k}^{*}\|_{F}$$

$$\|\mathbf{\Sigma}_{k+1} - \mathbf{\Sigma}_{k+1}^{*}\|_{F} \leq \left(3 + \frac{2}{\mathcal{T}_{k}}\right) \|\mathbf{u}_{k} - \mathbf{u}_{k}^{*}\|_{2} + 2\|\boldsymbol{\delta}_{k}\|_{2}$$

ANALYSIS OF POWER ITERATION

Building on top of previous analysis, we note that

- $\|(\Sigma_k \Sigma_k^*) \mathbf{u}_i^*\|_2$ evolves differently for each j.
- $\left| (\mathbf{u}_k \mathbf{u}_k^*)^\top \mathbf{u}_j^* \right|$ evolves differently for each j.

Lemma 2. Let \mathbf{v}_k be the output of the k-th power iteration. For all $k \in [d]$ and $j \ge k$, we have:

$$\left\| \left(\mathbf{\Sigma}_k^* - \mathbf{\Sigma}_k \right) \mathbf{u}_j^* \right\|_2 \le \sum_{k'=1}^{k-1} \lambda_{k'} \left| \mathbf{v}_{k'}^{\top} \mathbf{u}_j^* \right|. \tag{8}$$

Lemma 3. Let \mathbf{x}_t be the result of running power iteration starting from \mathbf{x}_0 for t iterations, as defined in (5). Let $\mathbf{M} = \mathbf{M}^* + \mathbf{H}$. Moreover, let $\sigma_j^*, \mathbf{a}_j^*$ be the j-th eigenvalue and eigenvector of \mathbf{M}^* , and let σ_j be the j-th eigenvalue of M. Assume that there exists $c_0 \in (0, \infty)$ such that $||\mathbf{x}_{0}^{\top}\mathbf{a}_{1}|| \geq c_{0}^{-1}$. Then, for all $j = 2, \ldots, r$, we have:

$$\left|\mathbf{x}_{t}^{\top}\mathbf{a}_{j}^{*}\right| \leq c_{0} \left(\left(\frac{\sigma_{j}^{*}}{\sigma_{1}}\right)^{t} + \frac{\sigma_{j}^{*}}{\sigma_{1} - \sigma_{j}^{*}} \left\|\mathbf{H}\mathbf{a}_{j}^{*}\right\|_{2}\right).$$

