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IDEA OF PROOF

Lemma 1 (Davis-Kahan sin © Theorem). Let M* &

R and let M = M* + H. Let at and a; be the top
eigenvectors of M* and M, respectively. Then we have:

BACKGROUND: PCA AND DEFLATION METHOD SUB-ROUTINE AGNOSTIC ERROR PROPAGATION

Our focus: Real symmetric matrix X € R*** with | | In this section, we assume that the sub-routines PCA (-) only gives us the magnitude of the error ||dx||,’s

eigenvalues and eigenvectors {\:, u’}?_,, satisfying

L2 AT > AL > o> A5 >0, Theorem 1. Consider the scenario of looking for the top-K eigenvectors of 3 € R**. Let T; = Xi— s, for j € [d—1],

and Tq = N} Also, let T min = Mingerx) Tr. If Yk € | K — 1] it holds:*

Target: Find the top-K eigenvectors of ¥. When S Jye —1 L o
K = 1, one can solve the following problem using 10, < =57 (3 | T;) = |12k — X5l p < O (Tk) (3) sin Z {ay, a1} <
e.g. power 1teration. j=k+1
| | o Based on Lemma 1, we show that
u = argmin v'Xv then the output of the deflation method in (2) satisfies for all k € | K|: * ; *
veR ||v]|,=1 . ° Huk o ukHQ < Te sz o ZkHF
g 2N
. * * k' I J * *
When K > 1, the problem can be generalized to [vie —uglly < JJug —ug|ly + |0kl < 5}; A [0k] 1111 (3 T > - (4) o ||Zp — X5, < (3 + Tk) |, — ug|l,+2 |0k,
) — j=Kk'
U" = arg max XV, V), (1)
VelQ:,: x: QeS0(d)} Example: Consider X with )\;k — %, and H(S]{;H2 <c- ot for some o € (O, 1) Then ANALYSIS OF POWER ITERATION
A popular method to solve (1) is the deflation 1 Building on top of previous analysis, we note that
method tZQ(log——l—KlogK) = ||[vi —ug|l, <€ VEk e K] | |
1 =2; Vp=PCA(X,1t); ) € o ‘(Ek - Xp)u; {2 evolves differently for each j.
i1 = Xk — ViV Spvev, : - i X | -
k+1 k= VEV 25 ViV Issue: To guarantee an e-small error, ¢ grows faster with K as \;’s decrease faster (smaller eigengaps) o |(up—ur)T u?| evolves differently for each ;.
Here PCA () denotes a sub-routine that solves for “This theorem holds under a more relaxed assumption. The choice of ||y ||, here is made just to make the result more interpretable.

the top eigenvector of a matrix (e.g. power iteration) Lemma 2. Let vy, be the output of the k-th power itera-
and t is the number of iterations of the sub-routine. IR ER TR oA ATTERT T T am e Samimm T e G tion. Forall k € |d] and j > k, we have:

Ideal Scenario: Let u;, be normalized top eigenvector | | 1n this section, we assume that the sub-routine PCA (-) is the power iteration. Z A\

—l_ * [ ] ° ° ° ° ° ° ° ° °
(,l;f 2 sucl}(that Uy, uf :h 1. When v, }T uy, for 211 Power Iteration: Given a symmetric matrix M € R**¢ with rank r and an initialization vector x, € R?, then —
= 1,..., /X, we can further guarantee that u, = u;. power iteration executes:

(25— 2p) uj] (8)

Xip1 = MXy;  Xppq = H;;tHH : (5)
[SSUE WITH INEXACT DEFLATION t+1il2

Why is this helpful? Previous theorem only utilize the magnitude of 9;’s, while power iteration also tells us
the directional information of d;’s.
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Issue: PCA (-)is usually inexact: §; := v — uy # 0. ﬁ-

. . * /% x|,
Error Propagation: Let X =), , Ayupuy, Theorem 2. Consider the problem of looking for the top-K eigenvectors of & € R**? Let T; = \f — X\, fori € [d — 1]

ViAW = Vi AUl = N £ DD = W £ ul and Tq = N}, and let Ty, min = min;ep 7;. Assume that there exists a constant ¢y € (0, 0o) such that the initialized vector

Xq k11 the k-th power iteration procedure satisfies ‘X(I kuk‘ > cg ! forall k € [K]." Let G = maxe (k] (1 | CAO*/\* ’““) If 0 20 40 o0 100

Influence on downstream task: ||d;|, is larger when At

t is smaller (less computation). we use t steps of power iteration to solve for the top eigenvectors such that:

Lemma 3. Let x; be the result of running power iteration

Spectral Clustering on MNIST dataset K —k-+10g K /Tic mintlog G starting from xq for t iterations, as defined in (5). Let
Q * * * * ) \v/k S K * * * . .
£ > log (7TA5+A5, 1 ) —log(7A5, +A%) (6) M = M* + H. Moreover, let o, a; be the j-th eigenvalue
- 0.35- K5 0 (log /\*_%Og/\ ) Vi < d and eigenvector of M*, and lef o; be the j-th eigenvalue
e K15 b+ of M. Assume that there exists co € (0,00) such that
= = —1 .
e 0.30- Then we can quarantee that for all k € | K| xgai| > co". Then, forall j =2, ..., we have:
—
o
= 0.25 \* - . t .
i / / Co k41 T *
= V. — Uu <3 8k g 5 5]@ | ( » ) : (7) |Xt a =" J ) '
-§ 0.20- H kH2 k/zl )\]@ H H2 77{/ )‘k’ O'j 2
= 0.15- Example: Consider X with A = ~. Then G = O(1), and » k=75
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Num Powlter Steps t> 0 (log S K> = |vi —ui, < € Vk € [K] 1%)0—13_
€ —10 |
. 1013 [ -
Central QHESthn: “This is a standard assumption to guarantee the convergence of the power iteration, as in Golub and Van Loan [1996] 10-16 .,WWWF,\)-,}u,,;..\j::;.f_:ﬁ;,.u'." i M,.] II-V\N 7 VY
How can we characterize the accumulation 0 20 40 60 80 100 0 20 40 60 80 100
and propagation of the errors from inexactly REFERENCE j j
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SOlUmg each tOP 54 envector in PCA () ! Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press, third edition, 1996.




