

THEORETICAL RESULT: LOFT TRAJECTORY STAYS NEAR GD TRAJECTORYE

Let $\mathbf{X} \in \mathbb{R}^{n \times d \times p}$ be the input data and $\mathbf{y} \in \mathbb{R}^n$ be the labels. Let f be a one-hidden-layer CNN with only the first layer filters \mathbf{W} trainable. Let $\{\mathbf{W}_t\}_{t=0}^T$ and $\{\hat{\mathbf{W}}_t\}_{t=0}^T$ be the weights in the trajectory of LOFT and GD. Let *S* be the number of workers.

Theorem 1. Assume the number of hidden filters satisfies m

LOFT: Finding Lottery Tickets through Filter-wise Training

Qihan Wang^{*}, Chen Dun^{*}, Fangshuo Liao^{*}, Chris Jermaine, Anastasios Kyrillidis *Equal Contribution

of hidden filters satisfies
$$m = \Omega\left(\frac{n^4T^2}{\lambda_0^4\delta^2}\max\{n,d\}\right)$$
 and the step size satisfies $\eta = O\left(\frac{\lambda_0}{n^2}\right)$. The $\mathbb{E}_{[\mathbf{M}_T]}\left[\left\|\mathbf{W}_T - \hat{\mathbf{W}}_T\right\|_F^2\right] + \eta \sum_{t=0}^{T-1} \mathbb{E}_{[\mathbf{M}_T]}\left[\left\|f(\mathbf{X},\mathbf{W}_t) - f\left(\mathbf{X},\hat{\mathbf{W}}_t\right)\right\|_2^2\right] \le O\left(\frac{n^2\sqrt{d}}{\lambda_0^2\kappa m^{\frac{1}{4}}\sqrt{\delta}} + \frac{n^2\sqrt{d}}{\lambda_0^2\kappa m^{\frac{1}{4}}\sqrt{\delta}}\right)$

SETTING	No-Prune	METHODS	PRUNING RATIO			COMM COST	IMPROV.
			80%	50%	30%		
PreResNet-34 CIFAR-10	93.51	GPIPE-2	93.93	94.38		131.88G	
		LoFT-2	93.25	93.43		104.59G	$1.26 \times$
		GPIPE-4	93.93	94.38		461.60G	
		LoFT-4	93.89	94.02		144.27G	3.20 imes
ResNet-34 CIFAR-10	93.22	GPIPE-2	93.69	93.81		131.88G	
		LoFT-2	93.38	93.41		104.60G	$1.26 \times$
		GPIPE-4	93.69	93.81		461.60G	
		LoFT-4	93.41	93.60		144.29G	3.20 imes
PreResNet-34 CIFAR-100	76.57	GPIPE-2	76.72	77.09		131.88G	
		LoFT-2	75.93	77.27		104.77G	$1.26 \times$
		GPIPE-4	76.72	77.09		461.60G	
		LoFT-4	75.77	76.79		144.64G	3.19 imes
ResNet34 CIFAR-100	75.93	GPIPE-2	75.51	76.00		131.88G	
		LoFT-2	76.11	77.07		104.78G	$1.26 \times$
		GPIPE-4	75.51	76.00		461.60G	
		LoFT-4	75.05	76.51		144.66G	3.19 imes
PreResNet-18 ImageNet	70.71	GPIPE-2	66.71	69.14	70.29	20954.24G	
		LoFT-2	65.41	69.12	69.64	791.09G	$21.60 \times$
		GPIPE-4	66.71	69.14	70.29	52385.59G	
		LoFT-4	65.60	68.93	69.77	1284.84G	$40.77 \times$

en, with probability at least $1 - O(\delta)$ *we have:*

 $\frac{2\eta^2 T \theta^2 (1\!-\!\xi) \lambda_0}{2\eta^2 T \theta^2 (1\!-\!\xi) \lambda_0}$

[1] Binhang Yuan, Anastasios Kyrillidis, and Christopher M. Jermaine. Distributed Learning of Deep Neural Networks using Independent Subnet Training. *arXiv e-prints,* page arXiv:1910.02120, 2019. [2] Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. *arXiv e-prints*, page arXiv:1803.03635, 2018.

REFERENCE