LOFT: Finding Lottery Tickets through Filter-wise Training

Qihan Wang^{*}, Chen Dun^{*}, Fangshuo Liao^{*}, Chris Jermaine, Anastasios Kyrillidis

*Equal Contribution

NEW METRIC FOR FILTER DISTANCE

Let \mathcal{R} and $\hat{\mathcal{R}}$ be two rankings of the filters. Let $\sigma : \mathcal{R} \to \hat{\mathcal{R}}$ such that $\sigma(\mathcal{R}_i) = \hat{\mathcal{R}}_i$ We introduce a new metric to measure filter similarity based on Spearman's footrule

$$F_{\text{filter}}(\sigma) = \sum_{i} \frac{1}{i} \cdot |\ln(i) - \ln(\sigma(i))|$$

Properties of the Metric

- $\ln(\cdot)$ is used to approximate the summation.
- $|\ln(i) \ln(\sigma(i))|$ is larger if *i* is significantly different from $\sigma(i)$

LOFT: INTUITION AND APPROACH

- Training until loss convergence is not necessary for finding winning tickets
- LoFT: an algorithm that sacrifice some loss convergence property but can be trained efficiently in distributed fashion

• $\frac{1}{i}$ puts larger weight on filters with higher ranking in \mathcal{R}

Winning tickets appears before loss converges (darker=smaller distance)

FINDING WINNING TICKETS FASTER

Filter distance between filter during training and the winning filter

Each worker holds a smaller filter and a subset of the channels in the hidden layers. Each subnetwork can be trained for multiple local iterations.

Input and output layer is not partitioned.

LOFT ACHIEVES LOWER COMMUNICATION COST

SETTING	NO-PRUNE	METHODS	PRUNIN	IG RATIO	30%	COMM COST	IMPROV.
PreResNet-34 CIFAR-10	93.51	GPIPE-2 LOFT-2	93.93 93.25 02.02	94.38 93.43		131.88G 104.59G	$1.26 \times$
		LoFT-4	93.93 93.89	94.38 94.02		461.60G 144.27G	3.20 imes
RESNET-34 CIFAR-10	93.22	GPIPE-2 LoFT-2 GPIPE-4 LoFT-4	93.69 93.38 93.69 93.41	93.81 93.41 93.81 93.60		131.88G 104.60G 461.60G 144.29G	$1.26 \times$ $3.20 \times$
PreResNet-34 CIFAR-100	76.57	GPIPE-2 LoFT-2 GPIPE-4 LoFT-4	76.72 75.93 76.72 75.77	77.09 77.27 77.09 76.79		131.88G 104.77G 461.60G 144.64G	1.26 imes 3.19 imes
RESNET34 CIFAR-100	75.93	GPIPE-2 LoFT-2 GPIPE-4 LoFT-4	75.51 76.11 75.51 75.05	76.00 77.07 76.00 76.51		131.88G 104.78G 461.60G 144.66G	1.26 imes $3.19 imes$
PreResNet-18 ImageNet	70.71	GPIPE-2 LoFT-2 Gpipe-4 LoFT-4	66.71 65.41 66.71 65.60	69.14 69.12 69.14 68.93	70.29 69.64 70.29 69.77	20954.24G 791.09G 52385.59G 1284.84G	21.60 imes 40.77 imes

THEORETICAL RESULT: LOFT TRAJECTORY STAYS NEAR GD TRAJECTORYE

Let $\mathbf{X} \in \mathbb{R}^{n \times d \times p}$ be the input data and $\mathbf{y} \in \mathbb{R}^n$ be the labels. Let f be a one-hidden-layer CNN with only the first layer filters \mathbf{W} trainable. Let $\{\mathbf{W}_t\}_{t=0}^T$ and $\{\hat{\mathbf{W}}_t\}_{t=0}^T$ be the weights in the trajectory of LOFT and GD. Let S be the number of workers.

Theorem 1. Assume the number of hidden filters satisfies $m = \Omega\left(\frac{n^4T^2}{\lambda_0^4\delta^2}\max\{n,d\}\right)$ and the step size satisfies $\eta = O\left(\frac{\lambda_0}{n^2}\right)$. Then, with probability at least $1 - O\left(\delta\right)$ we have:

$$\mathbb{E}_{[\mathbf{M}_T]}\left[\left\|\mathbf{W}_T - \hat{\mathbf{W}}_T\right\|_F^2\right] + \eta \sum_{t=0}^{T-1} \mathbb{E}_{[\mathbf{M}_T]}\left[\left\|f\left(\mathbf{X}, \mathbf{W}_t\right) - f\left(\mathbf{X}, \hat{\mathbf{W}}_t\right)\right\|_2^2\right] \le O\left(\frac{n^2\sqrt{d}}{\lambda_0^2 \kappa m^{\frac{1}{4}}\sqrt{\delta}} + \frac{2\eta^2 T \theta^2 (1-\xi)\lambda_0}{S}\right).$$