LOFT: Finding Lottery Tickets through Filter-wise Training

Qihan Wang^{*}, Chen Dun^{*}, Fangshuo Liao^{*}, Chris Jermaine, Anastasios Kyrillidis

∗ Equal Contribution

NEW METRIC FOR FILTER DISTANCE

Let $\mathcal R$ and $\hat{\mathcal R}$ be two rankings of the filters. Let σ : $\mathcal{R} \rightarrow \hat{\mathcal{R}}$ such that $\sigma(\mathcal{R}_i)~=~\hat{\mathcal{R}}_i$ We introduce a new metric to measure filter similarity based on Spearman's footrule

• 1 $\frac{1}{i}$ puts larger weight on filters with higher ranking in R

$$
F_{\text{filter}}(\sigma) = \sum_{i} \frac{1}{i} \cdot |\ln(i) - \ln(\sigma(i))|
$$

Properties of the Metric

- \bullet ln(\cdot) is used to approximate the summation.
- $|\ln(i) \ln(\sigma(i))|$ is larger if *i* is significantly different from $\sigma(i)$
- Training until loss convergence is not necessary for finding winning tickets
- LoFT: an algorithm that sacrifice some loss convergence property but can be trained efficiently in distributed fashion

Winning tickets appears before loss converges (darker=smaller distance)

LOFT: INTUITION AND APPROACH

Each worker holds a smaller filter and a subset of the channels in the hidden layers. Each subnetwork can be trained for multiple local iterations.

Input and output layer is not partitioned.

LOFT ACHIEVES LOWER COMMUNICATION COST

FINDING WINNING TICKETS FASTER

Filter distance between filter during training and the winning filter

THEORETICAL RESULT: LOFT TRAJECTORY STAYS NEAR GD TRAJECTORYE

Let $X\in\mathbb{R}^{n\times d\times p}$ be the input data and $y\in\mathbb{R}^n$ be the labels. Let f be a one-hidden-layer CNN with only the first layer filters $\bf W$ trainable. Let $\{ {\bf W}_t\}_{t=0}^T$ and $\{\hat{\bf W}_t\}_{t=0}^T$ be the weights in the trajectory of LOFT and GD. Let S be the number of workers.

Theorem 1. Assume the number of hidden filters satisfies $m = \Omega \left(\frac{n^4 T^2}{\lambda^4 \delta^2} \right)$ $\overline{\lambda_0^4}$ $\frac{4T^2}{4\delta^2}\max\{n,d\}$ \setminus and the step size satisfies $\eta = O\left(\frac{\lambda_0}{n^2}\right)$ $\overline{n^2}$ *. Then, with probability at least* $1 - O(\delta)$ *we have:*

$$
\mathbb{E}_{\left[\mathbf{M}_T\right]}\left[\left\|\mathbf{W}_T-\hat{\mathbf{W}}_T\right\|_F^2\right]+\eta\sum_{t=0}^{T-1}\mathbb{E}_{\left[\mathbf{M}_T\right]}\left[\left\|f\left(\mathbf{X},\mathbf{W}_t\right)-f\left(\mathbf{X},\hat{\mathbf{W}}_t\right)\right\|_2^2\right] \leq O\left(\frac{n^2\sqrt{d}}{\lambda_0^2\kappa m^{\frac{1}{4}}\sqrt{\delta}}+\frac{2\eta^2T\theta^2(1-\xi)\lambda_0}{S}\right).
$$