Accelerated Convergence of Nesterov's Momentum for Deep Neural Networks under Partial Strong Convexity


Fangshuo Liao, Anastasios Kyrillidis. ALT, 2024

On the Error-Propagation of Inexact Deflation for Principal Component Analysis


Fangshuo Liao, Junhyung Lyle Kim, Cruz Barnum, Anastasios Kyrillidis. Preprint. Under Review, 2023

Scissorhands: Exploiting the of Importance Hypothesis for LLM KV Cache Compression at Test Time


Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis, Anshumali Shrivastava. NeurIPS, 2023

Strong Lottery Ticket Hypothesis with ε-Perturbation


Zheyang Xiong*, Fangshuo Liao*, Anastasios Kyrillidis. AISTATS, 2023

LoFT: Finding Lottery Tickets through Filter-wise Training


Qihan Wang*, Chen Dun*, Fangshuo Liao*, Chris Jermaine, Anastasios Kyrillidis. AISTATS, 2023

GIST: Distributed training for large-scale graph convolutional networks


Cameron R Wolfe*, Jingkang Yang*, Fangshuo Liao*, Arindam Chowdhury, Chen Dun, Artun Bayer, Santiago Segarra, Anastasios Kyrillidis. Journal of Applied and Computational Topology, 2023

On the Convergence of Shallow Neural Network Training with Randomly Masked Neurons


Fangshuo Liao, Anastasios Kyrillidis. TMLR, 2022

How Much Pre-training Is Enough to Discover a Good Subnetwork?


Cameron R Wolfe*, Fangshuo Liao*, Qihan Wang, Junhyung Lyle Kim, Anastasios Kyrillidis. Preprint. Under Review, 2021